\(\int \frac {\cos ^3(a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx\) [180]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 82 \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx=\frac {\arcsin (\cos (a+b x)-\sin (a+b x))}{4 b}+\frac {\log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}\right )}{4 b}-\frac {\cos (a+b x)}{b \sqrt {\sin (2 a+2 b x)}} \]

[Out]

1/4*arcsin(cos(b*x+a)-sin(b*x+a))/b+1/4*ln(cos(b*x+a)+sin(b*x+a)+sin(2*b*x+2*a)^(1/2))/b-cos(b*x+a)/b/sin(2*b*
x+2*a)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {4378, 4392, 4391} \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx=\frac {\arcsin (\cos (a+b x)-\sin (a+b x))}{4 b}-\frac {\cos (a+b x)}{b \sqrt {\sin (2 a+2 b x)}}+\frac {\log \left (\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}+\cos (a+b x)\right )}{4 b} \]

[In]

Int[Cos[a + b*x]^3/Sin[2*a + 2*b*x]^(3/2),x]

[Out]

ArcSin[Cos[a + b*x] - Sin[a + b*x]]/(4*b) + Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*a + 2*b*x]]]/(4*b) -
Cos[a + b*x]/(b*Sqrt[Sin[2*a + 2*b*x]])

Rule 4378

Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[e^2*(e*Cos[a
+ b*x])^(m - 2)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + Dist[e^4*((m + p - 1)/(4*g^2*(p + 1))), Int[(
e*Cos[a + b*x])^(m - 4)*(g*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, g}, x] && EqQ[b*c - a*d, 0]
&& EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[m, 2] && LtQ[p, -1] && (GtQ[m, 3] || EqQ[p, -3/2]) && IntegersQ[2*m, 2*
p]

Rule 4391

Int[sin[(a_.) + (b_.)*(x_)]/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-ArcSin[Cos[a + b*x] - Sin[a + b*
x]]/d, x] - Simp[Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[c + d*x]]]/d, x] /; FreeQ[{a, b, c, d}, x] && EqQ[
b*c - a*d, 0] && EqQ[d/b, 2]

Rule 4392

Int[((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_)/cos[(a_.) + (b_.)*(x_)], x_Symbol] :> Dist[2*g, Int[Sin[a + b*x]*(g*S
in[c + d*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ
[p] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {\cos (a+b x)}{b \sqrt {\sin (2 a+2 b x)}}-\frac {1}{4} \int \sec (a+b x) \sqrt {\sin (2 a+2 b x)} \, dx \\ & = -\frac {\cos (a+b x)}{b \sqrt {\sin (2 a+2 b x)}}-\frac {1}{2} \int \frac {\sin (a+b x)}{\sqrt {\sin (2 a+2 b x)}} \, dx \\ & = \frac {\arcsin (\cos (a+b x)-\sin (a+b x))}{4 b}+\frac {\log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}\right )}{4 b}-\frac {\cos (a+b x)}{b \sqrt {\sin (2 a+2 b x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.85 \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx=\frac {\arcsin (\cos (a+b x)-\sin (a+b x))+\log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 (a+b x))}\right )-2 \csc (a+b x) \sqrt {\sin (2 (a+b x))}}{4 b} \]

[In]

Integrate[Cos[a + b*x]^3/Sin[2*a + 2*b*x]^(3/2),x]

[Out]

(ArcSin[Cos[a + b*x] - Sin[a + b*x]] + Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*(a + b*x)]]] - 2*Csc[a + b
*x]*Sqrt[Sin[2*(a + b*x)]])/(4*b)

Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 35.44 (sec) , antiderivative size = 211562444, normalized size of antiderivative = 2580029.80

method result size
default \(\text {Expression too large to display}\) \(211562444\)

[In]

int(cos(b*x+a)^3/sin(2*b*x+2*a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 295 vs. \(2 (74) = 148\).

Time = 0.27 (sec) , antiderivative size = 295, normalized size of antiderivative = 3.60 \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx=-\frac {2 \, \arctan \left (-\frac {\sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} {\left (\cos \left (b x + a\right ) - \sin \left (b x + a\right )\right )} + \cos \left (b x + a\right ) \sin \left (b x + a\right )}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) - 1}\right ) \sin \left (b x + a\right ) - 2 \, \arctan \left (-\frac {2 \, \sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} - \cos \left (b x + a\right ) - \sin \left (b x + a\right )}{\cos \left (b x + a\right ) - \sin \left (b x + a\right )}\right ) \sin \left (b x + a\right ) + \log \left (-32 \, \cos \left (b x + a\right )^{4} + 4 \, \sqrt {2} {\left (4 \, \cos \left (b x + a\right )^{3} - {\left (4 \, \cos \left (b x + a\right )^{2} + 1\right )} \sin \left (b x + a\right ) - 5 \, \cos \left (b x + a\right )\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} + 32 \, \cos \left (b x + a\right )^{2} + 16 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) + 1\right ) \sin \left (b x + a\right ) + 8 \, \sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} + 8 \, \sin \left (b x + a\right )}{16 \, b \sin \left (b x + a\right )} \]

[In]

integrate(cos(b*x+a)^3/sin(2*b*x+2*a)^(3/2),x, algorithm="fricas")

[Out]

-1/16*(2*arctan(-(sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a))*(cos(b*x + a) - sin(b*x + a)) + cos(b*x + a)*sin(b*x
 + a))/(cos(b*x + a)^2 + 2*cos(b*x + a)*sin(b*x + a) - 1))*sin(b*x + a) - 2*arctan(-(2*sqrt(2)*sqrt(cos(b*x +
a)*sin(b*x + a)) - cos(b*x + a) - sin(b*x + a))/(cos(b*x + a) - sin(b*x + a)))*sin(b*x + a) + log(-32*cos(b*x
+ a)^4 + 4*sqrt(2)*(4*cos(b*x + a)^3 - (4*cos(b*x + a)^2 + 1)*sin(b*x + a) - 5*cos(b*x + a))*sqrt(cos(b*x + a)
*sin(b*x + a)) + 32*cos(b*x + a)^2 + 16*cos(b*x + a)*sin(b*x + a) + 1)*sin(b*x + a) + 8*sqrt(2)*sqrt(cos(b*x +
 a)*sin(b*x + a)) + 8*sin(b*x + a))/(b*sin(b*x + a))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(b*x+a)**3/sin(2*b*x+2*a)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx=\int { \frac {\cos \left (b x + a\right )^{3}}{\sin \left (2 \, b x + 2 \, a\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(b*x+a)^3/sin(2*b*x+2*a)^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(b*x + a)^3/sin(2*b*x + 2*a)^(3/2), x)

Giac [F]

\[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx=\int { \frac {\cos \left (b x + a\right )^{3}}{\sin \left (2 \, b x + 2 \, a\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(b*x+a)^3/sin(2*b*x+2*a)^(3/2),x, algorithm="giac")

[Out]

integrate(cos(b*x + a)^3/sin(2*b*x + 2*a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx=\int \frac {{\cos \left (a+b\,x\right )}^3}{{\sin \left (2\,a+2\,b\,x\right )}^{3/2}} \,d x \]

[In]

int(cos(a + b*x)^3/sin(2*a + 2*b*x)^(3/2),x)

[Out]

int(cos(a + b*x)^3/sin(2*a + 2*b*x)^(3/2), x)